Electronic throttle control

Electronic throttle control (ETC) is an automobile technology which severs the mechanical link between the accelerator pedal and the throttle. Most automobiles already use a throttle position sensor (TPS) to provide input to traction control, antilock brakes, fuel injection, and other systems, but use a bowden cable to directly connect the pedal with the throttle. An ETC-equipped vehicle has no such cable. Instead, the electronic control unit (ECU) determines the required throttle position by calculations from data measured by other sensors such as an accelerator pedal position sensor, engine speed sensor, vehicle speed sensor etc. The electric motor within the ETC is then driven to the required position via a closed-loop control algorithm within the ECU.

The benefits of ETC are largely unnoticed by most drivers because the aim is to make the vehicle power-train characteristics seamlessly consistent irrespective of prevailing conditions, such as engine temperature, altitude, accessory loads etc. However, acceleration response may occasionally be slower than with cable-driven throttle. The ETC is also working 'behind the scenes' to dramatically improve the ease with which the driver can execute gear changes and deal with the dramatic torque changes associated with rapid accelerations and decelerations.

ETC facilitates the integration of features such as cruise control, traction control, stability control, and precrash systems and others that require torque management, since the throttle can be moved irrespective of the position of the driver's accelerator pedal. ETC provides only a very limited benefit in areas such as air-fuel ratio control, exhaust emissions and fuel consumption reduction, working in concert with other technologies such as gasoline direct injection.

A criticism of the very early ETC implementations was that they were "overruling" driver decisions. Nowadays, the vast majority of drivers have no idea how much intervention is happening. Much of the engineering involved with drive-by-wire technologies including ETC deals with failure and fault management. Most ETC systems have sensor and controller redundancy, even as complex as independent microprocessors with independently written software within a control module whose calculations are compared to check for possible errors and faults.

Anti-lock braking (ABS) is a similar safety critical technology, whilst not completely 'by-wire', it has the ability to electronically intervene contrary to the driver's demand. Such technology has recently been extended to other vehicle systems to include features like brake assist and electronic steering control, but these systems are much less common, also requiring careful design to ensure appropriate back-up and fail-safe modes.

Failure modes

Before drive by wire technology was introduced, if a throttle stuck open a driver could generally put a toe under the accelerator and lift up. Occasionally after servicing or repair, the wire or cable between the accelerator and throttle would not be correctly reinstalled causing sudden acceleration. However, with the ETC, the movement is all done by electronic controls moving an electric motor. But just moving the throttle by sending a signal to the motor is an open loop condition and leads to poor control. Most if not all current ETC systems have a closed loop system whereby the ECU tells the throttle to open a certain amount according to an algorithm based on the geometry of the throttle. Then, if due to dirt build up in the throttle bore or a damaged TPS a signal is sent from the TPS to the ECU, the ECU can make appropriate adjustments to compensate, though it might result in surging, hesitation or uneven idle.

There are two primary types of throttle position sensors: a potentiometer or a Hall Effect sensor (magnetic device). The potentiometer is a satisfactory way for non-critical applications such as volume control on a radio, but as it has a wiper contact rubbing against a resistance element, and dirt and wear between the wiper and the resistor can cause erratic readings. The more reliable solution is the magnetic coupling that makes no physical contact, so will never be subject to failing by wear.

This is an insidious failure as it may not provide any symptoms until there is total failure. All cars having a TPS have what is known as a 'limp-home-mode'. When the car goes into the limp-home-mode it is because the accelerator and engine control computer and the throttle are not talking to each other in a way that they can understand. The engine control computer shuts down the signal to the throttle position motor and a set of springs in the throttle set it to a fast idle, fast enough to get the transmission in gear but not so fast that driving may be dangerous.

Recently, ETC was initially suspected by some to be responsible for alleged incidents of unintended acceleration in Toyota and Lexus vehicles. No evidence of this has been demonstrated, and Toyota has been exonerated by the U.S. National Highway Traffic Safety Administration (NHTSA).